2、单例模式
1、单例模式介绍
所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)。
比如Hibernate 的SessionFactory,它充当数据存储源的代理,并负责创建Session 对象。SessionFactory 并不是轻量级的,一般情况下,一个项目通常只需要一个SessionFactory 就够,这是就会使用到单例模式。
2、单例模式的种类
- 饿汉式(静态常量)
- 饿汉式(静态代码块)
- 懒汉式(线程不安全)
- 懒汉式(线程安全,同步方法)
- 懒汉式(线程安全,同步代码块)
- 双重检查
- 静态内部类
- 枚举
1、饿汉式(静态常量)
步骤:
- 构造方法私有化
- 内的内部创建对象
- 向外暴露一个静态的公共方法
public class Singleton01 {
private static final Singleton01 INSTANCE = new Singleton01();
/**
* 构造方法私有化,防止new
*/
private Singleton01(){
}
/**
* 提供一个公有的静态方法,返回实例对象
* @return INSTANCE
*/
public static Singleton01 getINSTANCE() {
return INSTANCE;
}
public static void main(String[] args) {
Singleton01 instance1 = Singleton01.getINSTANCE();
Singleton01 instance2 = Singleton01.getINSTANCE();
System.out.println(instance1 == instance2);
System.out.println("instance1.hashCode = " + instance1.hashCode());
System.out.println("instance2.hashCode = " + instance2.hashCode());
}
}
优缺点:
优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
缺点:在类装载的时候就完成实例化,没有达到Lazy Loading 的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费
这种方式基于classloder 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,在单例模式中大多数都是调用getInstance 方法,但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化instance 就没有达到lazy loading 的效果
破坏单例的情形
- 反射破坏单例:利用反射创建实例对象
- 反序列化破坏单例:前提是实现了
implements Serializable
接口 - Unsafe 破坏单例:这种情形是不能避免的
1、反射破坏单例
利用反射获取类的构造方法
private static void reflection(Class<?> clazz) throws NoSuchMethodException, InstantiationException, IllegalAccessException, InvocationTargetException {
Constructor<?> constructor = clazz.getDeclaredConstructor();
constructor.setAccessible(true);
System.out.println("反射创建实例:" + constructor.newInstance());
}
如何避免呢?👇
调用的时候加一层判断,如果创建了,则返回原实例或者抛出异常
private Singleton1() {
if (INSTANCE != null) {
throw new RuntimeException("单例对象不能重复创建");
}
System.out.println("private Singleton1()");
}
2、反序列化破坏单例
通过对象输出流将对象转成为字节流,再通过
ByteArrayInputStream
方法将字节流转为对象
private static void serializable(Object instance) throws IOException, ClassNotFoundException {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bos);
oos.writeObject(instance);
ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bos.toByteArray()));
System.out.println("反序列化创建实例:" + ois.readObject());
}
如何避免呢?👇
//方法名是固定的
public Object readResolve() {
return INSTANCE;
}
3、Unsafe 破坏单例
通过反射调用JDK内置的Unsafe方法破坏单例
private static void unsafe(Class<?> clazz) throws InstantiationException {
Object o = UnsafeUtils.getUnsafe().allocateInstance(clazz);
System.out.println("Unsafe 创建实例:" + o);
}
如何避免呢?👇
暂时还没有找到解决的方法,大佬们知道如何解决吗?
总结:这种单例模式可用,可能造成内存浪费,启动就创建对象实例
2、饿汉式(静态代码块)
public class Singleton02 {
private static final Singleton02 INSTANCE ;
/**
* 在静态代码块中,创建单例对象
*/
static {
INSTANCE = new Singleton02();
}
/**
* 构造方法私有化,防止new
*/
private Singleton02(){
}
/**
* 提供一个公有的静态方法,返回实例对象
* @return INSTANCE
*/
public static Singleton02 getINSTANCE() {
return INSTANCE;
}
public static void main(String[] args) {
Singleton02 instance1 = Singleton02.getINSTANCE();
Singleton02 instance2 = Singleton02.getINSTANCE();
System.out.println(instance1 == instance2);
System.out.println("instance1.hashCode = " + instance1.hashCode());
System.out.println("instance2.hashCode = " + instance2.hashCode());
}
}
优缺点:
这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。
总结:这种单例模式可用,但是可能造成内存浪费
3、懒汉式(线程不安全)
public class Singleton03 {
private static Singleton03 INSTANCE ;
/**
* 构造方法私有化,防止new
*/
private Singleton03(){
}
/**
* 提供一个静态的公有方法,当使用到该方法时,才去创建instance
* @return INSTANCE
*/
public static Singleton03 getINSTANCE() {
if (INSTANCE == null) {
INSTANCE = new Singleton03();
}
return INSTANCE;
}
public static void main(String[] args) {
//模拟1000个线程访问
for (int i = 0; i < 1000; i++) {
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("instance.hashCode= " + Singleton03.getINSTANCE().hashCode());
}
}).start();
}
}
}
优缺点:
达到了Lazy Loading 的效果,但是只能在单线程下使用。
如果在多线程下,一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式。
结论:在实际开发中,不要使用这种方式.
4、懒汉式(线程安全,同步方法)
public class Singleton04 {
private static Singleton04 INSTANCE ;
/**
* 构造方法私有化,防止new
*/
private Singleton04(){
}
/**
* 提供一个静态的公有方法,加入同步处理的代码,解决线程安全问题
* @return INSTANCE
*/
public static synchronized Singleton04 getINSTANCE() {
if (INSTANCE == null) {
INSTANCE = new Singleton04();
}
return INSTANCE;
}
public static void main(String[] args) {
for (int i = 0; i < 1000; i++) {
new Thread(() ->{
System.out.println("instance.hashCode= " + Singleton03.getINSTANCE().hashCode());
}).start();
}
}
}
优缺点:
解决了线程安全问题,给公有方法加上了锁
效率太低了,每个线程在想获得类的实例时候,执行getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return 就行了。方法进行同步效率太低
结论:在实际开发中,不推荐使用这种方式
5、懒汉式(线程安全,同步代码块)
public class Singleton05 {
private static Singleton05 INSTANCE ;
/**
* 构造方法私有化,防止new
*/
private Singleton05(){
}
/**
* 提供一个静态的公有方法,加入同步处理的代码,解决线程安全问题
* @return INSTANCE
*/
public static Singleton05 getINSTANCE() {
if (INSTANCE == null) {
//同步代码块
synchronized (Singleton03.class){
INSTANCE = new Singleton05();
}
}
return INSTANCE;
}
public static void main(String[] args) {
for (int i = 0; i < 1000; i++) {
new Thread(() ->{
System.out.println("instance.hashCode= " + Singleton03.getINSTANCE().hashCode());
}).start();
}
}
}
优缺点:
通过试图同步代码块来提高效率,解决线程安全
但事实上不可行,如果在多线程下,一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式。
6、双重检查
public class Singleton06 {
private static volatile Singleton06 INSTANCE ;
/**
* 构造方法私有化,防止new
*/
private Singleton06(){
}
/**
* 提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
* @return INSTANCE
*/
public static Singleton06 getINSTANCE() {
if (INSTANCE == null) {
//同步代码块
synchronized (Singleton03.class){
if (INSTANCE == null) {
INSTANCE = new Singleton06();
}
}
}
return INSTANCE;
}
public static void main(String[] args) {
for (int i = 0; i < 1000; i++) {
new Thread(() ->{
System.out.println("instance.hashCode= " + Singleton06.getINSTANCE().hashCode());
}).start();
}
}
}
为何必须加 volatile:
INSTANCE = new Singleton4()
不是原子的,分成 3 步:创建对象、调用构造、给静态变量赋值,其中后两步可能被指令重排序优化,变成先赋值、再调用构造- 如果线程1 先执行了赋值,线程2 执行到第一个
INSTANCE == null
时发现 INSTANCE 已经不为 null,此时就会返回一个未完全构造的对象
优缺点:
Double-Check 概念是多线程开发中常使用到的,如代码中所示,我们进行了两次if (singleton == null)检查,这样就可以保证线程安全了。
这样,实例化代码只用执行一次,后面再次访问时,判断if (singleton == null),直接return 实例化对象,也避免的反复进行方法同步.
线程安全;延迟加载;效率较高
总结:在实际开发中,推荐使用这种单例设计模式
7、静态内部类
public class Singleton07 {
/**
* 构造方法私有化,防止new
*/
private Singleton07(){
}
/**
* 写一个静态内部类,该类中有一个静态属性Singleton
*/
public static class SingletonClass{
private static final Singleton07 INSTANCE = new Singleton07();
}
/**
* 提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
* @return INSTANCE
*/
public static Singleton07 getINSTANCE() {
return SingletonClass.INSTANCE;
}
public static void main(String[] args) {
for (int i = 0; i < 1000; i++) {
new Thread(() ->{
System.out.println("instance.hashCode= " + Singleton07.getINSTANCE().hashCode());
}).start();
}
}
}
优缺点:
这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
静态内部类方式在Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用getInstance 方法,才会装载SingletonClass 类,从而完成Singleton 的实例化。
类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM 帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高
结论:推荐使用
8、枚举
public enum Singleton08 {
INSTANCE;
public void sayHello(){
System.out.println("你好,枚举单例模式!");
}
public static void main(String[] args) {
for (int i = 0; i < 100; i++) {
new Thread(() ->{
INSTANCE.sayHello();
System.out.println("instance.hashCode = "+INSTANCE.hashCode());
}).start();
}
}
}
优缺点:
借助JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象,绝对防止多次实例化。
3、单例模式在JDK 应用的源码分析
1、饿汉式
JDK 中,java.lang.Runtime 就是经典的单例模式(饿汉式)
public class Runtime {
private static Runtime currentRuntime = new Runtime();
/**
* Returns the runtime object associated with the current Java application.
* Most of the methods of class <code>Runtime</code> are instance
* methods and must be invoked with respect to the current runtime object.
*
* @return the <code>Runtime</code> object associated with the current
* Java application.
*/
public static Runtime getRuntime() {
return currentRuntime;
}
/** Don't let anyone else instantiate this class */
private Runtime() {}
······
}
2、双检锁懒汉式单例
System类中的Console对象的创建就是用的双重检锁
private static volatile Console cons = null;
/**
* Returns the unique {@link java.io.Console Console} object associated
* with the current Java virtual machine, if any.
*
* @return The system console, if any, otherwise <tt>null</tt>.
*
* @since 1.6
*/
public static Console console() {
if (cons == null) {
synchronized (System.class) {
if (cons == null) {
cons = sun.misc.SharedSecrets.getJavaIOAccess().console();
}
}
}
return cons;
}
3、内部类懒汉式单例
Collections类中的ReverseComparator.REVERSE_ORDER 就是内部类懒汉式单例
private static class ReverseComparator
implements Comparator<Comparable<Object>>, Serializable {
private static final long serialVersionUID = 7207038068494060240L;
static final ReverseComparator REVERSE_ORDER
= new ReverseComparator();
public int compare(Comparable<Object> c1, Comparable<Object> c2) {
return c2.compareTo(c1);
}
private Object readResolve() { return Collections.reverseOrder(); }
@Override
public Comparator<Comparable<Object>> reversed() {
return Comparator.naturalOrder();
}
}
4、内部类懒汉式单例
Collections 中的 EmptyNavigableSet 就是内部类懒汉式单例
private static class EmptyNavigableSet<E> extends UnmodifiableNavigableSet<E>
implements Serializable {
private static final long serialVersionUID = -6291252904449939134L;
public EmptyNavigableSet() {
super(new TreeSet<E>());
}
private Object readResolve() { return EMPTY_NAVIGABLE_SET; }
}
5、枚举饿汉式单例
Comparators.NaturalOrderComparator.INSTANCE 枚举饿汉式单例
class Comparators {
private Comparators() {
throw new AssertionError("no instances");
}
/**
* Compares {@link Comparable} objects in natural order.
*
* @see Comparable
*/
enum NaturalOrderComparator implements Comparator<Comparable<Object>> {
INSTANCE;
@Override
public int compare(Comparable<Object> c1, Comparable<Object> c2) {
return c1.compareTo(c2);
}
@Override
public Comparator<Comparable<Object>> reversed() {
return Comparator.reverseOrder();
}
}
......
}
4、注意事项和细节说明
单例模式保证了系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能。
当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用new
单例模式使用的场景:
- 需要频繁的进行创建和销毁的对象
- 创建对象时耗时过多或耗费资源过多(即:重量级对象)
- 但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)
5、总结
**经验之谈:**一般情况下,不建议使用第 1 种和第 2 种懒汉方式,建议使用第 3 种饿汉方式。只有在要明确实现 lazy loading 效果时,才会使用第 5 种登记方式。如果涉及到反序列化创建对象时,可以尝试使用第 6 种枚举方式。如果有其他特殊的需求,可以考虑使用第 4 种双检锁方式。